La Londe, 11 September 2007

How to find semimartingale decompositions relative to enlarged filtrations

HUMBOLDT-UNIVERSITÄT ZU BERLIN

Let S be a semimartingale relative to (\mathcal{F}_t)

$$\mathcal{G}_t \supset \mathcal{F}_t$$
 enlargement

Questions:

- Is S a (\mathcal{G}_t) -semimartingale also?
- If yes, how do the new semimartingale decompositions look like?
- $(H \cdot_{\mathcal{F}} S)$ defined $\Longrightarrow (H \cdot_{\mathcal{G}} S)$ defined also?

Application to mathematical finance

Financial markets with insiders

intrinsic perspective of the price for insider or normal investor

$$S_t = M_t + \int_0^t \alpha_s d\langle M, M \rangle_s$$

optimal investment strategy

$$\theta_t^* = x\alpha_t \mathcal{E}(\alpha \cdot M)_t$$

• maximal expected logarithmic utility

$$u(x) = \log(x) + \frac{1}{2}E \int_0^T \alpha_s^2 d\langle M, M \rangle_s$$

⇒ investment & utility depend on the semimartingale dec.

Semimartingale decompositions:

Let M be an (\mathcal{F}_t) -martingale

How to find a (\mathcal{G}_t) -decomposition M = N + A ?

Definition 1 A (G_t) -predictable process μ such that

$$M-\int_0^{\cdot} \mu_t \ d\langle M,M
angle_t$$
 is a $(\mathcal{G}_t)-$ local martingale

is called information drift of (G_t) with respect to M.

Initial enlargements

$$\mathcal{G}_t = \mathcal{F}_t \vee \sigma(L)$$
 (L random variable)

probability conditioned on the new information

$$P(\cdot|L)$$

1. Observation: The enlargement $(\mathcal{F}_t) \to (\mathcal{G}_t)$ corresponds to the random change of probability $P \to P(\cdot|L)$

If there are no singularities

$$P(\cdot|L) \ll P \text{ on } \mathcal{F}_t \text{ for all } t$$
 (Jacod's condition),

then

M martingale rel. to $(\mathcal{F}_t) \Longrightarrow M$ semimartingale rel. to $P(\cdot|L)$

2. Observation Girsanov's theorem \Longrightarrow semimartingale decompositions

For all x let

$$p_t^x(\omega) := \frac{P(d\omega|L=x)}{P(d\omega)}\Big|_{\mathcal{F}_t}$$

be the conditional density.

$$M \qquad (\mathcal{F}_{t}, P) - \text{martingale}$$

$$\implies M - \frac{1}{p^{x}} \cdot \langle M, p^{x} \rangle \qquad (\mathcal{F}_{t}, P(\cdot | L = x)) - \text{martingale}$$

$$\implies M - \frac{1}{p^{x}} \cdot \langle M, p^{x} \rangle \qquad (\mathcal{G}_{t}, P(\cdot | L = x)) - \text{martingale}$$

$$\implies M - \frac{1}{p^{L}} \cdot \langle M, p^{L} \rangle \qquad (\mathcal{G}_{t}, P) - \text{martingale}$$

$$M - \frac{1}{p^L} \cdot \langle M, p^L \rangle$$
 (\mathcal{G}_t, P) — martingale

Theorem 1 If

$$p_t^x = p_0^x + \int_0^t \alpha_s^x dM_s + ortho. martingale$$

then

$$M_t - \int_0^t rac{lpha_s^{L(\omega)}}{p_s^{L(\omega)}} d\langle M, M \rangle_s$$
 is a (\mathcal{G}_t) – local martingale.

Remarks:

- 1) inf. drift $= rac{lpha_s^{L(\omega)}}{p_s^{L(\omega)}} =$ variational derivative of the logarithm of p^L
- 2) All we need is:

$$\alpha^x(s) P_L(dx) \ll p_s^x P_L(dx) = P(L \in dx | \mathcal{F}_s)$$

Information drift via Malliavin calculus

On the Wiener space:

information drift = logarithmic Malliavin trace of the conditional probability relative to the new information

Theorem 2 (Imkeller, Pontier, Weisz 2000)

If

$$D_t P(L \in dx | \mathcal{F}_t) \ll P(L \in dx | \mathcal{F}_t)$$

then the (G_t) -information drift is given by

$$\frac{D_t p_t^{L(\omega)}(\omega)}{p_t^{L(\omega)}(\omega)}.$$

General enlargements (continuous case)

Arbitrary enlargement $(\mathcal{G}_t) \supset (\mathcal{F}_t)$

Aim: General representation of the information drift of a continuous martingale M wrt (\mathcal{G}_t)

Assumption: There exist (\mathcal{F}_t^0) and (\mathcal{G}_t^0) countably generated s. th. (\mathcal{F}_t) and (\mathcal{G}_t) are the smallest extensions with the usual conditions.

 \Longrightarrow reg. conditional probability $P_t(\omega,A)$ relative to \mathcal{F}_t^0 exists

Martingale property ⇒

$$P_t(\cdot, A) = P(A) + \int_0^t k_s(\cdot, A)dM_s + L_t^A,$$

where $\langle L^A, M \rangle = 0$.

Condition (Abs): $k_t(\omega, \cdot)$ is a signed measure on \mathcal{G}_{t-}^0 and satisfies

$$k_t(\omega,\cdot)\Big|_{\mathcal{G}_{t-}^0} \ll P_t(\omega,\cdot)\Big|_{\mathcal{G}_{t-}^0}$$

for $d\langle M, M \rangle \otimes P$ -a.a (ω, t) .

Lemma 1 There exists an $(\mathcal{F}_t \otimes \mathcal{G}_t)$ -predictable process γ such that for $d\langle M, M \rangle \otimes P$ -a.a. (ω, t)

$$\gamma_t(\omega, \omega') = \frac{k_t(\omega, d\omega')}{P_t(\omega, d\omega')} \Big|_{\mathcal{G}_{t-}^0}.$$

Theorem 3 (A., Dereich, Imkeller 2005) The information drift of M relative to (\mathcal{G}_t) is given by

$$\alpha_t(\omega) = \gamma_t(\omega, \omega)$$

Question: When is (Abs) satisfied?

How *strong* is the assumption (Abs)?

Theorem 4

There exists a square-integrable information drift \Longrightarrow (Abs)

Proof: requires that σ -fields are countably generated

Questions: 1. Practical relevance?

2. What about martingales with jumps?

Purely discontinuous martingales

$$X_t = \int_0^t \int_{\mathbb{R}_0} \psi(s, z) \left[\mu - \pi \right] (ds, dz)$$

 $\mu=$ Poisson random measure with compensator π

 ψ predictable and integrable

Predictable representation property

If M square integrable (\mathcal{F}_t) -martingale, then there exists a predictable $\varphi \in L^2(\pi \otimes P)$ such that

$$M_t = M_0 + \int_0^t \int_{\mathbb{R}_0} \varphi(s, z) \ [\mu - \pi](ds, dz).$$

Arbitrary enlargement $(\mathcal{G}_t) \supset (\mathcal{F}_t)$

Conditional new information

$$P_t(\cdot, A) = P(A) + \int_0^t \int_{\mathbb{R}_0} k_s(z, A) [\mu - \pi](ds, dz).$$

 ν = Levy measure

Condition (Abs): $\int_{\mathbb{R}_0} \psi_t(\omega, z) k_t(\omega, z, \cdot) d\nu(z)$ is a signed measure on \mathcal{G}_{t-}^0 and satisfies

$$\int_{\mathbb{R}_0} \psi_t(\omega, z) k_t(\omega, z, \cdot) d\nu(z) \bigg|_{\mathcal{G}_{t-}^0} \ll P_t(\omega, \cdot) \bigg|_{\mathcal{G}_{t-}^0},$$

for $P \otimes l$ -a.a. (ω, t) .

Theorem 5 There exists an $(\mathcal{F}_t \otimes \mathcal{G}_t)$ -predictable δ such that for $d\langle M, M \rangle \otimes P$ -a.a. (ω, t)

$$\delta_t(\omega, \omega') = \frac{\int_{\mathbb{R}_0} \psi_t(\omega, z) k_t(\omega, z, d\omega') d\nu(z)}{P_t(\omega, d\omega')} \Big|_{\mathcal{G}_{t-}^0}$$

Moreover,

$$\eta_t(\omega) = \delta_t(\omega, \omega)$$

is the information drift of X, i.e.

$$X_t - \int_0^t \eta_s \, ds$$
 is a (\mathcal{G}_t) -local martingale

.

Calculating examples

General scheme:

• If $\mathcal{G}_t^0 = \mathcal{F}_t^0 \vee \mathcal{H}_t^0$, then it is enough to determine the density along (\mathcal{H}_t^0) , i.e.

$$\delta_t(\omega, \omega') = \frac{\int_{\mathbb{R}_0} \psi_t(\omega, z) k_t(\omega, z, d\omega') d\nu(z)}{P_t(\omega, d\omega')} \Big|_{\mathcal{H}_{t-}^0}.$$

• Determine the density by using a generalized Clark-Ocone formula:

$$k_t(\omega, z, A) = \text{predictable projection of } D_{t,z} P_{t+}(\omega, A)$$

A Clark-Ocone formula for Poisson random measures

Canonical space:

 $\Omega=$ set of all integer valued signed measures ω on $[0,1] imes \mathbb{R}\setminus\{0\}$ s.th.

- $\omega(\{(t,z)\}) \in \{0,1\}$,
- $\omega(A \times B) < \infty \text{ if } \pi(A \times B) = \lambda(A)\nu(B) < \infty.$

random measure

$$\mu(\omega; A \times B) := \omega(A \times B)$$

 $P = \text{measure on } \Omega \text{ such that }$

 μ is a Poisson r.m. with compensator $\pi = \lambda \otimes \nu$

Picard's difference operator

Definition:

$$\epsilon_{(t,z)}^-$$
 and $\epsilon_{(t,z)}^+:\Omega o\Omega$ defined by
$$\epsilon_{(t,z)}^-\omega(A imes B):=\omega(A imes B\cap\{(t,z)\}^c),$$

$$\epsilon_{(t,z)}^+\omega(A imes B):=\epsilon_{(t,z)}^-\omega(A imes B)+\mathbf{1}_A(t)\mathbf{1}_B(z).$$

$$D_{(t,z)}F:=F\circ\epsilon_{(t,z)}^+-F$$

Theorem 6 Let F be bounded and \mathcal{F}_1 -measurable. Then

$$F = E(F) + \int_0^1 \int_{\mathbb{R}_0} [D_{(t,z)}F]^p \ [\mu - \pi](dt, dz),$$

where $[D_{(\cdot,z)}F]^p$ is the predictable projection of $D_{(\cdot,z)}F$.

Generating information drifts

RECALL:
$$P_t(\cdot, A) = P(A) + \int_0^t \int_{\mathbb{R}_0} k_s(z, A) \left[\mu - \pi\right] (ds, dz)$$

Theorem 7 Let $A \in \mathcal{F}$. Then

$$k_t(z, A) = [D_{(t,z)}(P_{t+}(\omega, A))]^p$$

= $P_{t-}(\epsilon_{(t,z)}^+\omega, A) - P_{t-}(\omega, A)$

Example:

$$X_t = \int_0^t \int_{\mathbb{R}_0} \psi(s, z) [\mu - \pi] (dr, dz)$$

 $(\mathcal{F}_t^0) = \text{filtration generated by } \mu$

$$\mathcal{G}_t^0 = \mathcal{F}_t^0 \vee \sigma(|X_1|)$$
 (initial enlargement)

Suppose $P(X_1 - X_t \in dx) \ll$ Lebesgue measure and

$$f(t,x) = \frac{P(X_1 - X_t \in dx)}{dx}$$

Then

$$P_t(\cdot, |X_1| \le c) = \int_0^c [f(t, y - X_t) + f(t, -y - X_t)] dy$$

and

$$P_{t+}(\epsilon_{(t,z)}^{+}\omega, |X_{1}| \leq c)) = \int_{0}^{c} [f(t, y - X_{t}(\omega) - \mathbf{z}) + f(t, -y - X_{t}(\omega) - \mathbf{z})]dy$$

Consequently,

$$k_t(z, |X_1| \le c) = \int_0^c [f(t, y - X_{t-} - z) + f(t, -y - X_{t-} - z)] dy$$
$$-P_{t-}(\cdot, |X_1| \le c),$$

$$\longrightarrow \delta_t(\omega, \omega') = \frac{\int_{\mathbb{R}_0} \psi(t, z) k_t(\omega, z, d\omega') \ d\nu(z)}{P_t(\omega, d\omega')} \Big|_{\sigma(|X_1|)}$$

Lemma 2 The information drift η_t of X relative to (\mathcal{G}_t) is given by

$$\int_{\mathbb{R}_0} \left[\frac{f(t, |X_1| - X_{t-} - z) + f(t, -|X_1| - X_{t-} - z)}{f(t, |X_1| - X_{t-}) + f(t, -|X_1| - X_{t-})} - 1 \right] \psi(t, z) \nu(dz)$$

Remark:

- a) If $\int_{\mathbb{R}_0} |\psi(t,z)| d\nu(z) < \infty \implies$ separate terms
- b) This scheme works for many examples

Conclusion

- enlargements of filtrations can be seen as random changes of measure
- variational calculus allows to derive explicit semimartingale decompositions with respect to enlarged filtrations
- on Wiener space: information drift = logarithmic Malliavin trace of the conditional probability relative to the enlarging information
- on a Poisson space: information drift = logarithmic Picard trace of the conditional probability relative to the enlarging information

Thanks-

1

Thanks for your attention!