La Londe, 11 September 2007

How to find semimartingale decompositions
relative to enlarged filtrations




Introduction

Let S be a semimartingale relative to (F;)

G O Fy enlargement

Questions:
e Is S a (G;)-semimartingale also?

e |f yes, how do the new semimartingale decompositions look like?

o (H-rS) defined = (H -¢g S) defined also?




Introduction

Application to mathematical finance
Financial markets with insiders

intrinsic perspective of the price for insider or normal investor

t
S, = M, +/ asd(M, M),
0

e optimal investment strategy
07 =zaE(a- M),
e maximal expected logarithmic utility

u(x) = log(x) + %E/OT aZd(M, M),

— investment & utility depend on the semimartingale dec.




Introduction

Semimartingale decompositions:

Let M be an (F;)-martingale
How to find a (G;)-decomposition M = N + A ?

Definition 1 A (G;)-predictable process . such that
M —/ pe d(M,M), isa (G)— local martingale
0

is called information drift of (G;) with respect to M.




Initial enlargements

Initial enlargements

G =F: Vo(l) (L random variable)

probability conditioned on the new information

P(-|L)

1. Observation: The enlargement (F;) — (G;) corresponds to the
random change of probability P — P(-|L)

If there are no singularities
P(-|L) < P on F; for all t ( Jacod’s condition),
then

M  martingale rel. to (F;) = M semimartingale rel. to P(-|L)




Initial enlargements

2. Observation Girsanov's theorem = semimartingale decompositions

For all x let

s, Pldw|L = x)
be the conditional density.
M (F:, P) — martingale
1
— M- — - (M,p") (F, P(-|L = x)) — martingale
px
1
— M- — - (M,p") (Gt, P(-|L = x)) — martingale
pﬂ?
1
— M- — (M, p*) (G:, P) — martingale




Initial enlargements

1
M — o (M, p*) (Gt, P) — martingale

Theorem 1 /f

t
P = P +/ asdMs + ortho. martingale
0

then

t . Lw)
M, — /0 &L(w) d{M,M), isa (G:)— local martingale.

S

Remarks: Lo
1) inf. drift = L(w) = variational derivative of the logarithm of p*

2) All we need |s

a®(s) Pp(dxr) < p? Pr(dx) = P(L € dzx|Fy)




Initial enlargements

Information drift via Malliavin calculus

On the Wiener space:

information drift = logarithmic Malliavin trace of the conditional

probability relative to the new information

Theorem 2 (Imkeller, Pontier, Weisz 2000)
If
DtP(L c dCULFt) <K P(L c diB'ft)

then the (G;)-information drift is given by

Dip; (w)

L(w
pr“ (w)




General enlargements (continuous case)

General enlargements (continuous case)

Arbitrary enlargement (G;) D (F)

Aim: General representation of the information drift of a continuous
martingale M wrt (G;)

Assumption: There exist (F}) and (G}) countably generated s. th. (F;)
and (G;) are the smallest extensions with the usual conditions.

— reg. conditional probability P;(w, A) relative to F} exists

Martingale property —-
t
Pi(-,A) = P(A) + / ko(-, AYdM, + L2,
0

where (L4, M) = 0.




General enlargements (continuous case)

Condition (Abs): k;(w,-) is a signed measure on G? and satisfies

for d(M, M) ® P-a.a (w,1t).

Lemma 1 There exists an (F; ® G;)—predictable process ~ such that
for d(M, M) ® P-a.a. (w,t)

ke(w, dw’)
Pi(w, dw')

’Yt(waw/) —

Gy_

Theorem 3 (A., Dereich, Imkeller 2005) The information drift of M
relative to (G;) is given by

Ot (W) — Vt (w7 LU)




General enlargements (continuous case)

Question: When is (Abs) satisfied?
How strong is the assumption (Abs)?

Theorem 4

There exists a square-integrable information drift = (Abs)

Proof: requires that o-fields are countably generated

Questions: 1. Practical relevance?
2. What about martingales with jumps?




General enlargements for pure jump martingales

Purely discontinuous martingales

X, = / [ 0(6.2) [ lds, a2

1+ = Poisson random measure with compensator 7
1) predictable and integrable

Predictable representation property

If M square integrable (F;)-martingale, then there exists a predictable
¢ € L?(m ® P) such that

M; = MO—I—/Ot /RO ©(s,2) |p—m](ds,dz).




General enlargements for pure jump martingales

Arbitrary enlargement (G;) D (F;)

Conditional new information
'
P A) = P+ [ [ b Al = l(ds, )
0 JR,

v = Levy measure

Condition (Abs): fRo Ve (w, 2)ki(w, 2, -)dv(z) is a signed measure on
GY_ and satisfies

Ui (w, 2) ke (w, z, - )dv(2)

Ro

for P ® l-a.a.(w,t).




General enlargements for pure jump martingales

Theorem 5 There exists an (F; ® G;)—predictable § such that for
d(M, M) ® P-a.a. (w,t)

5 N fRO Ui (w, 2)ki(w, z, dw")dv(2)
t(w,u} ) — Pt(w, dw’) g0

Moreover,
Tt (w) = 04 (wv w)

Is the information drift of X, I.e.

t
X — / nsds is a (Gg)-local martingale
0




General enlargements for pure jump martingales

Calculating examples

General scheme:

o If G = FPVv HY, then it is enough to determine the density along
(HY), i.e.

5 N fRO Ve (w, 2)ki(w, z, dw")dv(2)
Hw,w') = By (o di) "

e Determine the density by using a generalized Clark-Ocone formula:

ki(w, 2z, A) = predictable projection of Dy . P4 (w, A)




General enlargements for pure jump martingales

A Clark-Ocone formula for Poisson random measures

Canonical space:

() = set of all integer valued signed measures w on [0,1] x R\ {0} s.th.

e w(i(t,2)}) €10, 1},
e WAXB)<xifm(Ax B)=AA)v(B) < .

random measure
p(w; A X B) == w(A x B)

P = measure on () such that

1+ is a Poisson r.m. with compensator m = A ® v




General enlargements for pure jump martingales

Picard’s difference operator

Definition:
€(t.2) and 6?2,@ : ) — () defined by

o
(t,

Z)w(A X B):=w(Ax BN{(t,2)}°),

¢l w(A X B) = ¢, w(Ax B)+1a(t)15(2).

. +
D(t’z)F = Fo 6<t,z> — F

Theorem 6 Let F' be bounded and Fi-measurable. Then

F=B(E)+ [ [ (DunFP fn -t dz).

where [D(. ,yF'|P is the predictable projection of D. . F.




General enlargements for pure jump martingales

Generating information drifts

RECALL: P,(-, A)

Theorem 7 Let A € F.

ki(z, A)

A)+ [y Jo,

Then

= D@z (Pry(w, A))JF
P (w,A)

= Pt— (ez;’z)w, A) —

— 7|(ds, dz)




General enlargements for pure jump martingales

Example:

X; = /0 5 W(s, z) | — w|(dr,dz)

(FP) = filtration generated by p

G =F’ Vo(Xi) (initial enlargement)

Suppose P(X; — X; € dxr) < Lebesgue measure and

P(Xl — Xt < dilj)
dx

f(t,:l?) —




General enlargements for pure jump martingales

Then

P |1 <€) — / Uty — X0) + F(t —y — X0)ldy

and

Pri (el Pl £ 0) = [ 1 g=Xi(w)=2)+ (1 —y—Xu(w)=2)ldy
0

Consequently,

ki(z, [ Xa1| <¢) = /O[f(t,y—Xt_—z)Jrf(t,—y—Xt_—z)]dy

—P (| Xa| < o),

fRo Y (t,2) ke (w,z,dw’) dv(z) ’
Py (w,dw’) o(|X1])

— 515 (Cd, w/) —




General enlargements for pure jump martingales

Lemma 2 The information drift 1, of X relative to (G;) is given by

/ [f(tv |X1‘_Xt—_Z)+f(t7_|X1|_Xt—_Z)
Ro f(ta |X1|_Xt—)+f(t7_|X1|_Xt—)

— 1| (¢, 2)v(dz)

Remark:
a) If fRo [Y(t, z)|dv(z) < oo == separate terms

b) This scheme works for many examples

10




Conclusion

Conclusion

enlargements of filtrations can be seen as random changes of

measure

variational calculus allows to derive explicit semimartingale
decompositions with respect to enlarged filtrations

on Wiener space: information drift = logarithmic Malliavin trace of
the conditional probability relative to the enlarging information

on a Poisson space: information drift = logarithmic Picard trace of
the conditional probability relative to the enlarging information




Thanks

Thanks for your attention!
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