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1 The model

MN = XN + AN :=
1√
N

WN + AN

where WN is a N×N Hermitian matrix such that (WN)ii,√
2Re((WN)ij)i<j,

√
2Im((WN)ij)i<j are iid with com-

mon distribution µ. µ is assumed to be symmetric with

variance σ2 and it satisfies a Poincaré inequality.

AN is a deterministic, Hermitian matrix.

Example: µ = N(0; σ2), XN ∼ GUE(N, σ2

N ).

2 Some known result in the non deformed

case (AN = 0)

• Convergence of the spectral measure µXn
:= 1

N

∑
i δλi(XN )

to the Wigner distribution µsc = 1
2πσ2

√
4σ2 − x21[−2σ,2σ].
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• Convergence a.s. of λmax(XN) to 2σ (the right end-

point of the support of the limiting distribution)

• Fluctuations (Tracy-Widom, Soshnikov)

σ−1N2/3 (λmax(XN)− 2σ)
L−→ T-W distribution F2

where the distribution F2 can be expressed with the

Fredholm determinant of an operator associated to

the Airy kernel.

3 The deformation

AN Hermitian of finite rank r (independent of N) with

eigenvalues θi of multiplicity ki; θ1 > θ2 > . . . > θJ .

Convergence of the spectral measure to the semicircular

distribution µsc.

What about the extremal eigenvalues?
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1) The Gaussian case (Péché)

Ex: θ1 with multiplicity 1.

1) si 0 ≤ θ1 < σ, σ−1N2/3 (λmax(MN)− 2σ)
L−→ F2

2) si θ1 = σ, σ−1N2/3 (λmax(MN)− 2σ)
L−→ F3

3) si θ1 > σ, N1/2 (λmax(MN)− ρθ1
)
L−→ N (0, σ2

θ1
)

with ρθ1
= θ1 + σ2

θ1
> 2σ.

2) The non Gaussian case for a particular AN

(Féral-Péché)

AN is the deformation defined by (AN)ij = θ
N , so that

r = 1 and θ1 = θ.

Same TCL as in the Gaussian case, universality of the

fluctuations (independent of µ, the distribution of the

entries).
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3) The non Gaussian case, AN general

Theorem 1 a.s. behaviour of the spectrum of MN .

Let J+σ (resp. J−σ) be the number of j’s such that

θj > σ (resp. θj < −σ).

(a) ∀1 ≤ j ≤ J+σ, ∀1 ≤ i ≤ kj,

λk1+···+kj−1+i(MN) −→ ρθj
a.s.,

(b) λk1+···+kJ+σ
+1(MN) −→ 2σ a.s.,

(c) λk1+···+kJ−J−σ
(MN) −→ −2σ a.s.,

(d) ∀j ≥ J − J−σ + 1, ∀1 ≤ i ≤ kj,

λk1+···+kj−1+i(MN) −→ ρθj
a.s.

Remark: Same result as in the sample covariance ma-

trices (Bai-Silverstein, Baik-Silverstein)

Theorem 2 Fluctuations

Let AN = diag(θ, 0, · · · , 0) and assume that θ > σ.

Then

√
N

(
λmax(MN)− ρθ

)
L−→ (1− σ2

θ2
)
{

µ ∗ N (0, vθ)
}

.

where vθ = v(θ, σ2,
∫

x4dµ(x)).

−→ Non universality of the fluctuations.

4



4 Elements of Proof of Theorem 1

Step 1 Prove that a.s.

Spect(MN) ⊂ Kσ(θ1, . . . θJ) + [−ε, +ε] (1)

for N large, where Kσ(θ1, · · · , θJ) :=
{

ρθJ
; · · · ; ρθJ−J−σ+1

}
∪ [−2σ; 2σ] ∪

{
ρθJ+σ

; · · · ; ρθ1

}
.

Tool: The Stieltjes transform: for z ∈ C\R, define

gN(z) = trN(GN(z)) where GN(z) = (zIN −MN)−1 is

the resolvent of MN . We set hN(z) = E[gN(z)].

gN(z) =

∫
1

z − x
dµMN

(x); hσ(z) =

∫
1

z − x
dµsc(x).

Aim: Obtain a precise estimate

hσ(z)− hN(z) +
1

N
Lσ(z) = O(

1

N2
) (2)

where Lσ is the Stieltjes transform of a distribution η

with compact support in Kσ.

With the help of the inverse Stieltjes transform,

E[trN(ϕ(MN))] =

∫
ϕ(x)dµsc(x)+

1

N

∫
ϕ(x)dη(x)+O(

1

N2
),

for ϕ smooth with compact support;

and some variance estimates, we deduce from (2)

trN 1cKε
σ(θ1,··· ,θJ )(MN) = O(1/N

4
3) a.s.
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and therefore the inclusion of the spectrum (1).

Proof of (2):

1) The Gaussian Case:

• The Gaussian integration by parts formula:

φ : R→ C, ξ standard Gaussian

E(ξφ(ξ)) = E(φ
′
(ξ)).

Φ : Hn(C)→ C, H ∈ Hn(C),

N

σ2
E[Tr(XNH)Φ(XN)] = E[Φ

′
(XN) ·H]

Apply it for Φ(XN) = [(zIN − XN − AN)−1]kl =

GN(z)kl and H = Ekl; then sum over k and l.

→ σ2
E[g2

N(z)]−zE[gN(z)]+1+
1

N
E[Tr(GN(z)AN)] = 0

→ σ2h2
N(z)−zhN(z)+1+

1

N
E[Tr(GN(z)AN)] = O(

1

N2
)

Recall that σ2h2
σ(z)− zhσ(z) + 1 = 0.
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Estimate for E[Tr(GN(z)AN)]:

AN = U∗ΛU where Λ is a diagonal matrix with entries

λi 6= 0 for i ≤ r, λi = 0, i > r. We can show using

• The Gaussian integration by parts formula

• Some variance estimates

• hN(z) = hσ(z) + O( 1
N

)

the estimate

E[Tr(GN(z)AN)] =
r∑

i=1

λi

z − λi − σ2hσ(z)
+ O(

1

N
)

Set

R
AN
G (z) =

r∑

i=1

λi

z − λi − σ2hσ(z)
=

∑

θi 6=0

ki
θi

z − θi − σ2hσ(z)
.

Then,

σ2h2
N(z)− zhN(z) + 1 +

1

N
R

AN
G (z) = O(

1

N2
)

leading to

hN(z)− hσ(z) +
1

N
L(z) = O(

1

N2
)

where L(z) = h−1
σ (z)E[(z − sc)−2]RAN

G (z).
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Question:

- L Stieltjes transform of a distribution ?

- Support of this distribution?

←→Analyticity of L (+ conditions); set of singular points.

If |θi| > σ, x ∈ R\[−2σ, 2σ],

x− θi − σ2hσ(x) = 0⇐⇒ x = θi +
σ2

θi
:= ρθi

.

2) The non Gaussian case

GIP replaced by: (Khorunzhy, Khoruzhenko, Pastur)

Lemma 1 Let ξ be a real-valued rv such that E(|ξ|p+2) <

∞. Let φ : R→ C such that the first p+1 derivatives

are continuous and bounded. Then,

E(ξφ(ξ)) =

p∑

a=0

κa+1

a!
E(φ(a)(ξ)) + ε

where κa are the cumulants of ξ, |ε| ≤ C supt |φ(p+1)(t)|E(|ξ|p+2).

Apply to ξ = Re((XN)ij), Im((XN)ij), (XN)ii, the odd

cumulants vanish (µ symmetric). One must consider the

third derivative of Φ = (GN(z))kl.
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One obtains:

σ2h2
N(z)− zhN(z) + 1 +

1

N
R(z) = O(

1

N2
)

where R(z) = R
AN
G (z) + κ4R

0
Φ′′′(z).

R0
Φ′′′(z) is analytic on C\[−2σ, 2σ].

Step 2: A.s. convergence of the first extremal eigenval-

ues of MN .

Lemma 2 (Weyl) Let B and C be two N×N Hermi-

tian matrices. For any pair of integers j, k such that

1 ≤ j, k ≤ N and j + k ≤ N + 1, we have

λj+k−1(B + C) ≤ λj(B) + λk(C).

For any pair of integers j, k such that 1 ≤ j, k ≤ N

and j + k ≥ N + 1, we have

λj(B) + λk(C) ≤ λj+k−N(B + C).
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5 Sketch of Proof of Theorem 2

λ1(MN) = θ +
(WN)11√

N
+ M̌ ∗

·1Ĝ(λ1(MN))M̌·1

where Ĝ is the resolvent associated to the Wigner matrix

of size N − 1 obtained from MN by removing the first

row and column;

M̌·1 = t ((MN)21, . . . , (MN)N1) =
1√
N

t ((WN)21, . . . , (WN)N1) .

Use the resolvent equation:

Ĝ(λ1(MN))−Ĝ(ρθ) = −(λ1(MN)−ρθ)Ĝ(ρθ)Ĝ(λ1(MN))

and
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Theorem 3 (Bai-Yao, Baik-Silverstein) Let B = (bij)

be a N × N random Hermitian matrix and YN =

(y1, . . . , yN) be an independent vector of size N which

contains i.i.d standardized entries with bounded fourth

moment and such that E(y2
1) = 0 if y1 is complex. As-

sume that

(i) there exists a constant a > 0 (not depending on

N) such that ||B|| ≤ a,

(ii) 1
N

TrB2 converges in probability to a number a2,

(iii) 1
N

∑N
i=1 b2

ii converges in probability to a number a2
1.

Then the random variable 1√
N

(Y ∗NBYN − TrB) con-

verges in distribution to a Gaussian variable with mean

zero and variance

(E|y1|4 − 1− t/2)a2
1 + (t/2)a2

where t = 4 when Y1 is real and is 2 when y1 is com-

plex.
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