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1 The model

1
My =Xx+ Ay ::\/—NWN+AN

where Wy is a N X N Hermitian matrix such that (Wy);;,
\/§R6((WN>ij>i<j7 ﬂ]m((WN)U)Kj are 1id with com-
mon distribution p. p is assumed to be symmetric with
variance o2 and it satisfies a Poincaré inequality.

Ap is a deterministic, Hermitian matrix.

2

Example: ;= N(0;0%), Xy ~ GUE(N, %).

2 Some known result in the non deformed
case (Ay =0)

e Convergence of the spectral measure py, = % D i On(xy)
to the Wigner distribution pug. = #\/ 40% — 221 [_94.9]-
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e Convergence a.s. of A\ (Xy) to 20 (the right end-
point of the support of the limiting distribution)

e Fluctuations (Tracy-Widom, Soshnikov)
o IN? (Apae (X ) — 20) £, TW distribution F

where the distribution F5 can be expressed with the
Fredholm determinant of an operator associated to
the Airy kernel.

3 The deformation

Ay Hermitian of finite rank r (independent of N) with
eigenvalues 6; of multiplicity k;; 61 > 65 > ... > 6.
Convergence of the spectral measure to the semicircular
distribution fs.

What about the extremal eigenvalues?



1) The Gaussian case (Péché)
Ex: 6; with multiplicity 1.

Dsi0<b <o, o N3 (A My) — 20) -5 Fy

) sif =0, o N3 Apae(My) — 20) - Fy

) L
3) sith > g, N1/2 ()‘maa:(MN) - p91) - N(()’ 0-31)
with pg, = 01 + 2—12 > 20.

2) The non Gaussian case for a particular Ay
(Féral-Péché)

Ay is the deformation defined by (An)i;; = 4, so that
r=1and 6, = 0.

Same TCL as in the Gaussian case, universality of the
fluctuations (independent of p, the distribution of the
entries).



3) The non Gaussian case, Ay general

Theorem 1 a.s. behaviour of the spectrum of My.
Let J,, (resp. J_,) be the number of j’s such that
0, >0 (resp. 8; < —o).

() V1<j<Tom VI<i<hj,
>\/{Z1+"'—|—]€j,1—|—i(MN) — p@j a.s.,

(b) )\k1+---+kj+a+1(MN) — 20 a.s.,

(c) >\k1+---+kJ_J_U(MN) — —20 a.s.,

(d) Vj>J—J ,+1,V1<i<kj,
Mooty 4i(My) — gy, s

Remark: Same result as in the sample covariance ma-
trices (Bai-Silverstein, Baik-Silverstein)

Theorem 2 Fluctuations
Let Ay = diag(0,0,---,0) and assume that 0 > o.
Then

0.2

\/N(Ama:c(MN) - Pe) (1= @){M « N (0, Ue)}-

where vy = v(0, 02, [ x*du(x)).

—— Non universality of the fluctuations.
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4 Elements of Proof of Theorem 1

Step 1 Prove that a.s.
Spect(My) C K, (bh,...0;) + [—€, +¢€ (1)
for N large, where K (6, ,0;) :=

{pej; e ;peJ_J_UH} U [—20;20] U {pe%; e ;Pel}-

Tool: The Sticltjes transform: for z € C\R, define
gy (2) = try(Gy(2)) where Gy(2) = (2Iy — My) ™t is
the resolvent of M. We set hy(2) = Elgn(z)].

ov(2) = [ iy @) hle) = [ ——duo),

Z— X Z— X

Aim: Obtain a precise estimate
1 1
ho(2) = h(2) + - Lo(2) = O(53) (2)

where L, is the Stieltjes transform of a distribution n
with compact support in K.
With the help of the inverse Stieltjes transform,

Blirn (p(Mw)) = [ ele)dualal [ ole)n)+0(55).

for (o smooth with compact support;
and some variance estimates, we deduce from (2)

4
try 1ch(91’...’9J)(MN) = O(l/N?’) a.s.
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and therefore the inclusion of the spectrum (1).

Proof of (2):
1) The Gaussian Case:

e The Gaussian integration by parts formula:
¢ R — C, & standard Gaussian

E(£6(€)) = E(6 (€)).
d:H,(C)— C, He H,(C),
N

SE[Tr(Xx H)®(Xy)] = E[®(Xy) - H]

Apply it for (I)(XN> = [(Z]N — Xy — AN>_1]I<;Z =
Gn(2)w and H = Ejy; then sum over k and .

— 0°Elg} (2)] — 2Elgn(2)] + 1+ 1 E[T(G(2)Ax)] = 0

= i 2)—=ha(2) L GEITHGa (2)Ax)] = Ol

Recall that 02h2(2) — zh,(2) +1 = 0.



Estimate for E[Tr(Gx(z)Ay)]:

Axy = U*AU where A is a diagonal matrix with entries
N #0fore <r X\ =0,7>r. Wecan show using

e The Gaussian integration by parts formula
e Some variance estimates
o hn(z) = he(2) + O(%)

the estimate

E[THGr(:)Ax)] = 3 P + Ol

1=1

Set

r

RéN(Z):Zz—)\—UQh Zkz—ﬁ—zﬁh()'

=1 0,40
Then,

1 4 1
o°h3(2) — zhy(2) + 1+ NRGN(Z) = O(m)

leading to



Question:
- L Stieltjes transform of a distribution 7
- Support of this distribution?

«—— Analyticity of L (+ conditions); set of singular points.

If |0;| > o, v € R\[—20, 20],

0.2

x—Qi—JQha(a:):O<:>a:=9i+?::p9i.

]

2) The non Gaussian case

GIP replaced by: (Khorunzhy, Khoruzhenko, Pastur)

Lemma 1 Let & be a real-valued rv such that E(|£]PT?) <
0o. Let ¢ : R — C such that the first p+1 derivatives
are continuous and bounded. Then,

E(£p(€) = > “HE((¢)) + ¢

al
a=0

where k, are the cumulants of €, |e| < C sup, [PV () |[E(|£]PH2).
Apply to f = RG((XN)ZJ), ]m((XN)Zj), (XN)iip the odd

cumulants vanish (u symmetric). One must consider the
third derivative of ® = (G (2))pu.



One obtains:

Ph(2) = 2ha(2) + 1+ 1 R(2) = Ol3)

where R(z) = RéN(z) + Ky Ryu(2).

Ryu(z) is analytic on C\[—20, 20].

Step 2: A.s. convergence of the first extremal eigenval-
ues of My.

Lemma 2 (Weyl) Let B and C be two N x N Hermi-
tian matrices. For any pair of integers j, k such that
1 <43, k<Nandj+k < N-+1, we have

)\j+k_1(B + C) < )\J(B> + )\k(C>

For any pair of integers j,k such that 1 < j,k < N
and 7 +k > N+ 1, we have

Ni(B) +M(C) < Nj—n(B + C).



5 Sketch of Proof of Theorem 2

|44 A .
A(My) = 0+ ( \/]%” + MEG(A (M) M,
where G is the resolvent associated to the Wigner matrix
of size N — 1 obtained from My by removing the first
row and column;
. 1
My ="((My)a, .., (My)n1) = ﬁt

(Wx)at, s (Wa)n1) -
Use the resolvent equation:

G (My)—=Glpg) = —(M(My)—pg)G(pg) G\ (My))

and
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Theorem 3 (Bai-Yao, Baik-Silverstein) Let B = (b;;)
be a N x N random Hermitian matrix and Yy =
(y1, ..., yn) be an independent vector of size N which
contains 1.1.d standardized entries with bounded fourth
moment and such that E(y?) = 0 if y, is complex. As-
sume that

(i) there exists a constant a > 0 (not depending on
N ) such that ||B|| < a,

(it) +TrB* converges in probability to a number a,,
(iti) + SV b2 conwerges in probability to a number a?.

Then the random variable \/LN(Y]@BYN — TrB) con-
verges in distribution to a Gaussian variable with mean
zero and variance

(Elp[* — 1 —t/2)ai + (t/2)ay

where t = 4 when Y7 is real and is 2 when 1y, is com-
plex.
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