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Introduction

Yt = ξ +
Z T

t
f (s,Ys ,Zs ) ds �

Z T

t
ZsdWs

�∂u
∂t
+ Lu � F (t, x , u, σ (t, x)Du) = 0 in (0,T )�Rn

u (T , x) = g (x) in Rn.

Lu = �1
2

n

∑
i ,j=1

aij (t, x)
∂2u

∂xi∂xj
�
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∑
i ,j=1

bi (t, x)
∂u
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,
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Introduction

Backward doubly stochastic di¤erential equation (BDSDE) are equation of
the following type :

Yt = ξ+
Z T

t
f (s,Ys ,Zs ) ds+

Z T

t
g (s,Ys ) dBs �

Z T

t
ZsdWs , 0 � t � T

(1.1)
where the dW is a forward Itô integral and the dB is a backward Itô
integral.

Pardoux-Peng (1994) are introduced this type of equations, and they
have proved the existence and uniqueness of solutions for BDSDEs
when g and f is uniformly Lipschitz.

Y. Shi, Y. Gu and K. Liu (2005), have proved the existence of
solution for BDSDE when g is uniformly lipischitz and f continuous,
with sub-linear growth in y and z .
In the present note, we consider the case where g is uniformly
lipischitz and f is continuous and quadratic growth in z . We prove
the existence a minimal and a maximal solution.
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BDSDE with quadratic growth

Let

f : Ω� [0,T ]�R�Rd! R

g : Ω� [0,T ]�R ! R

be measurable and such that for any (y , z) 2 R�Rd ,

f (., y , z) 2 M2
�
0,T ,Rd

�
g (., y) 2 M2 (0,T ,R)

Moreover, we assume that there exist constants C > 0 and K > 0, such
that for any (ω, t) 2 Ω� [0,T ] and (y , z) 2 R�Rd ,8><>:

jf (t, y , z)j � C
�
1+ jz j2

�
jg (t, y1)� g (t, y2)j � C jy1 � y2j

g (t, y) � K
(H1)

let us assume that ξ 2 S∞
T ([0,T ] ,R).
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BDSDE with quadratic growth

De�nition

A pair of process (y , z) : Ω� [0,T ]! R�Rd is solution of BDSDE
(1.1) if (y , z) 2 S∞

T ([0,T ] ;R)�M2
T

�
0,T ;Rd

�
, and satis�es BDSDE

(1.1).
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Existence result

Theorem
Under Assumption (H1), BDSDE (1.1) has a solution
(Y ,Z ) 2 S∞

T ([0,T ] ,R)�M2
T

�
0,T ,Rd

�
. Moreover, this equation

admits a minimal solution (Y�,Z�) and a maximal solution (Y �,Z �) .
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Uniqueness result

We say that the coe¢ cient f satis�es condition (H1)-(H2) with some
constants C , C1 > 0, if for every t 2 R+,8<: jf (t, y , z)j � C

�
1+ jz j2

�
, P p.s��� ∂f

∂z (t, y , z)
��� � C (1+ jz j) (H2)

���� ∂f∂y
(t, y , z)

���� � C1 �1+ jz j2� , P p.s. (H3)

Theorem
Under Assumptions (H2)-(H3), BDSDE (1.1) has a uinque solution in
S∞
T ([0,T ] ,R)�M2

T

�
0,T ,Rd

�
.
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BDSDE and quasilinear SPDEs

Let b 2 C 3
�
Rd ,Rd

�
, and σ 2 C 3

�
Rd ,Rd�d �. For (t, x) 2 [0,T ]�Rd ,

let fX t ,xs , t � s � Tg denote the unique solution of the following SDE :

dX t ,xs = b
�
X t ,xs

�
ds + σ

�
X t ,xs

�
dWs , t � s � T (1.2)

X t ,xs = x ,

Let h 2 C 2
�
Rd ,R

�
. For (t, x) 2 [0,T ]�Rd , let

f(Y t ,xs ,Z t ,xs ) ; t � s � Tg denote the unique solution of the following
BDSDE:

Y t ,xs = h
�
X t ,xT

�
+
Z T

s
f
�
r ,X t ,xr ,Y t ,xr ,Z t ,xr

�
dr +

Z T

s
g
�
r ,X t ,xr ,Y t ,xr

�
dBr

�
Z T

s
Z t ,xr dWs (1.3)
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BDSDE and quasilinear SPDEs

We will relate BDSDE (1.3) to the following quasilinear backward
stochastic partial di¤erential equations:

u (t, x) = h (x) +
Z T

t
[Lu (s, x) + f (s, x , u (s, x) , (ruσ) (s, x))] ds

+
Z T

t
g (s, x , u (s, x)) dBs (1.4)

where u : R+ �Rd ! R, with
L = 1

2 ∑d
i ,j=1 (σσ�)ij (t, x)

∂2

∂xi ∂xj
+∑d

i=1 bi (t, x)
∂

∂xi
.

Theorem

Let f , g satisfy assumption (H1). Let fu (t, x) , (t, x) 2 [0,T ]�Rdg be
a random �eld such that u(t, x) is FBt ,T�measurable for each
(t, x) , u 2 C 0,2

�
[0,T ]�Rd ,R

�
a.s, and u satis�es equation (1.4). Then

u (t, x) = Y t ,xt , where f(Y t ,xs ,Z t ,xs ) ; t � s � Tgt�0,x2Rd is the unique
solution of the BDSDE (1.3).
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Proof of the existence

Proposition

Let (Y ,Z ) 2 S∞
T (R)�M2

T

�
Rd
�
be a solution of BDSDE (1.1), with

parameters (f , g , ξ), and suppose that f satis�es (H1). Then for all
0 � t � T ,

Yt � E
"�
sup

Ω
YT

�+
/Ft

#
+ C (T � t) a.s

( resp . Yt � E
"�
inf
Ω
YT

��
/Ft

#
� C (T � t) a.s).

Moreover, there exists a constant eC depending on kY k∞ and C such that

E
Z T

0
jZs j2 ds � eC .
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Proof of the existence

Consider the solution ϕt of the stochastic di¤erential equation :

ϕt =

�
sup

Ω
YT

�+
+
Z T

t
Cds +

Z T

t
g (s, ϕs ) dBs C > 0.

Our aim is to prove that Yt � ϕt . Applying Itô�s formula to the process
Yt � ϕt , with the increasing C

2 function G given by

G (u) =
�
e2Cu � 1� 2Cu � 2C 2u2 for u 2 [0,M ]
0 for u 2 [�M, 0]

where M = kY k∞ + kϕk∞, Applying Gronwall�s lemma we get:

EG (Yt � ϕt ) = 0, 8t 2 [0,T ] ,
We obtain Yt � ϕt P � a.s. Hence,

Yt � E
"�
sup

Ω
YT

�+
/Ft

#
+ C (T � t) = M+.
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Proof of the existence

The second inequality will be proved by using similar arguments. Indeed,
let ψ be the solution of the SDE :

ψt =

�
inf
Ω
YT

��
�
Z T

t
Cds +

Z T

t
g (s,ψs ) dBs .

This implies that Yt � ψt , P � a.s , and then

Yt � E
"�
inf
Ω
YT

��
/Ft

#
� C (T � t) = M�. P � a.s.

We shall prove the inequality E
R T
0 jZs j

2 ds � eC . Let M = kY k∞ and the
function H de�ned on [�M,M ] by

H (y) =
1
2C 2

h
e2C (y+M ) � (1+ 2C (y +M))

i
,
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Proof of the existence

Ito�s formula applied to H (Yt ) it holds that:

EH (Y0) + E
Z T

0
jZs j2 ds � H (M) +M2Ce4CMT ,

which leads E
R T
0 jZs j

2 ds � H (M) +M2Ce4CMT = eC
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Proof of the existence

1 K. Bahlali, S. Hamadene and B, Mezerdi, Backward stochastic
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Proof of the existence

Let us consider the following BDSDE

Xt = η +
Z T

t
F (s,XS ,Λs ) ds +

Z T

t
G (s,Xs ) dBs �

Z T

t
ΛsdWs . (1.5)

Theorem
Assume the following hypotheses.
(i) η be bounded and FT�measurable random variable with values in R.
(ii) F : Ω� [0,T ]� ]0,∞[�Rd ! R a P�measurable function,
continuous in (x ,λ) and satisfying the following structure condition :

9C > 0 tel que 8t, x ,λ P p.s � 2C 2x � C jλj2 � F (s, x ,λ) � 2C 2x

and
jG (t, x)j � 2CK jx j .

Then BDSDE (1.5) has a maximal solution (Xt ,Λt ) .
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Proof of the existence

Following Proposition 3, we have M� � Yt � M+, then
m = e2cM

� � Xt � e2cM
+
= M

Step 1 Existence of Xt .
Lett γp : Rd ! R be a smooth function satisfying :

γp (λ) =

�
1 si jλj � 1
0 si jλj � 1

let us de�ne the function

Fp (t, x ,λ) = 2c2x
�
1� γp (λ)

�
+ γp (λ) F (t, x ,λ) .

we have limp!∞ & Fp = F .
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Proof of the existence

Applying theorem the existence in Y. Shi et al. the BDSDE associated
with (Fp ,G , η) has a solution (X p ,Λp). Again by applying the comparison
theorem proved in Y. Shi et al., it follows that M � X p � X p+1 � m.
Since Fp+1 � Fp , there exists a process Xt such that

Xt = lim
p!∞

X pt 8t � T , P p.s.

In addition P � a.s, for all t � T ,M � Xt � m .
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Proof of the existence

Step 2. There exists a subsequence of (Λp)p�1 which converges in M
2.

The sequence (Λp)p�1 is bounded in M
2 by proposition 3, then there

exists a subsequence of (Λp)p�1, which we still denote by (Λ
p)p�1 , which

converges weakly in M2 to a process Λ := (Λt )t�T .

Let θ = max
� 1
m , 4c

2M
�
, φ (x) =

�
e12θx�1
12θ

�
� x and p � q, then we

have X p � X q . On the other hand, by using Itô�s formula with
φ (X p � X q) the fact (Λp)p�1 converge weakly in M

2, from which we
deduce that

lim
p!∞

E
Z T

t
jΛp

s �Λs j2 ds = 0.

Hence (Λp
s )p�1 converges to Λs .
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Proof of the existence

Step 3. The process X = (Xt )t�T is continuous.
We shall prove that (X p) converges uniformly to X in L2. Let p � q,
applying Itô�s formula to (X p � X q)2 , and applying
Burkholder-Davis-Gundy inequality, aqnd the fact F and Fp are
continuous, and (Fp) is a decreasing sequence converging to F , then by
Dini�s theorem (Fp (t, ., .)) converges to F (t, ., .) uniformly. On the other
hand, since (Λp) converge in M2 to Λ, then there exists eΛ 2 M2 and a
subsequence, which we still denote (Λp)p�1 such that (Λ

p) converge to

Λ and supp�1 jΛp
t j � eΛt . Then Fp (s,X

p
s ,Λ

p
s ) converges to

F (s,X ps ,Λ
p
s ) , dt 
 dP � p.s. Moreover

Fp (s,X ps ,Λ
p
s ) � C1

�
1+ jΛp

t j
2
�
� C1

�
1+

��� eΛp
t

���2�
for constant C1.
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Proof of the existence

Finally, since the sequence (X p)p�1 is bounded, the Lebesgue dominated
convergence theorem implies that

E
�Z T 0

0
(X ps � X qs ) (Fp (s,X ps ,Λp

s )� Fq (s,X qs ,Λq
s )) ds

�
!

p,q!∞
0

Hence, the sequence (X p)p�1 converges uniformly to X in L2 and then X
is continuous.
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Proof of the existence

Step 4. Maximal and minimal solutions
Let (X ,Λ) and (X �,Λ�) two solutions of (1.5). For p � 1 and n � 1, let
F np be the function de�ned by :

F np (t, x ,λ) = sup
u,v2R2

fFp (t, u, v)� n (ju � x j+ jv � λj)g .

Since we have jFp (t, x ,λ)j � C1
�
1+ jλj2

�
, the function F np is Lipschitz

in (x ,λ) and converges toFp as n! ∞. Now let
�
X np ,Λn

p

�
be a solution

of the BDSDE associed with
�
F np ,G , η

�
. Since F np � Fp � F , X np � X �

for all n, p � 1, then for all p � 1 we have limn!∞ X np = Xp . Therefore
Xp � X � and �naly X � X � which implies hat the solution considered is
maximal.
The existence of a minimal solution is based on the same arguments.
Indeed, let (X�,Λ�) another solution of (1.5). For all p � 1 and n � 1, let
F np be the function de�ned by

F np (t, x ,λ) = inf
u,v2R2

fFp (t, u, v) + n (ju � x j+ jv � λj)g .
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Proof of the existence

Since we have jFp (t, x ,λ)j � C1
�
1+ p2

�
, the function F np is Lipschitz in

(x ,λ) and converges to Fp as n! ∞. Now let
�
X np ,Λn

p

�
be the solution

of the BDSDE associed with
�
F np ,G , η

�
. Since F np � Fp , X np � X� for all

n, p � 1. therefore for all p � 1, we have limn!∞ X np = Xp . Hence
Xp � X� and �naly X � X�, which implies that the solution considered
is minimal.
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Proof of the existence

Proof of theorem (1.4)
We transform equation (1.1) by the exponential function Xt = e2cYt , we
are led to solving the following BDSDE :

Xt = η +
Z T

t
F (s,XS ,Λs ) ds +

Z T

t
G (s,Xs ) dBs �

Z T

t
ΛsdWs . (1.5)

Applying Itô�s formula to Xt = e2cYt , we get

Xt = XT +
Z T

t
2cXs f (s,Ys ,Zs ) ds �

Z T

t
2cXsg (s,Ys ) dBs +

Z T

t
2cXsZsdWs

� 1
2

Z T

t
4c2Xs jg (s,Ys )j2 +

1
2

Z T

t
4c2Xs jZs j2 ds,
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Proof of the existence

where

F (s, x ,λ) = 2cx

"
f
�
s,
ln x
2c
,

λ

2cx

�
+ c

����g �s, ln x2c
�����2 � jλj2

4cx2

#

G (s, x) = 2cxg
�
s,
ln x
2c

�
,

and Xs = e2cYs . This implies in particular that Ys = lnXs
2c , Zs = Λs

2cXs
and

η = e2cξ .
It is not di¢ cult to show that the generator F (s, x ,λ) satis�es the
structure condition, and then we are in a position to apply theorem 5, to
prove existence of a maximal solution to the BDSDE (1.5) and then the
same can be claimed for equation (1.1) with
Ys = lnXs

2c , Zs = Λs
2cXs

.
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Thank you for your attention
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