Pólya processes

NICOLAS POUYANNE

(1) Université de Versailles St-Quentin, LMV
 (2) CNRS, UMR 8100
 UFR de sciences
 45, avenue des Etats-Unis
 78035 Versailles cedex

pouyanne@math.uvsq.fr

- I- Pólya-Eggenberger urns and Pólya processes
- II- Asymptotics, general statements

III- Method

La Londe, journées de probabilités, 14sep7

Pólya-Eggenberger urns with 2 colours

One urn, red and black balls, initial composition $U_1 = {}^t(\#red, \#black)$. Replacement matrix $R = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, a, b, c, d integers.

Composition at time *n*: vector $U_n = {}^t(\#red, \#black)$.

AssumptionsBalance:
$$a + b = c + d := B \ge 1$$
Tenability: $\begin{cases} b \ge 0, \ c \ge 0 \\ a \ge 0 \text{ or } (a|c \text{ and } a|(\#red)_1) \\ d \ge 0 \text{ or } (d|b \text{ and } d|(\#black)_1) \end{cases}$

Pólya process: $(X_n)_n$, where $X_n = \frac{1}{B}U_n$.

Generalisation in dimension $d \ge 2$, replacement matrix with real entries (random walk in \mathbb{R}^d), possible linear change of coordinates: general definition of

Pólya process

Pólya process: definition

V: real vector space of finite dimension $d \ge 1$. X_1, w_1, \ldots, w_d vectors of V, $(l_k)_{1 \le k \le d}$ basis of V^* (linear forms). $(X_n)_n$: random walk in V with increments in $\{w_1, \ldots, w_d\}$, defined by

Prob
$$(X_{n+1} = X_n + w_k | X_n) = \frac{l_k(X_n)}{n + \tau_1 - 1}$$

where τ_1 is the positive real number defined by $\tau_1 = \sum_{k=1}^d l_k(X_1)$.

Assumptions

i- Initialisation: $X_1 \neq 0$ and $\forall k \in \{1, \dots, d\}, \ l_k(X_1) \geq 0$; ii- balance: for all $k \in \{1, \dots, d\}, \ \sum_{j=1}^d l_j(w_k) = 1$; iii- tenability: for all $k, k' \in \{1, \dots, d\},$ $\begin{cases} k \neq k' \Longrightarrow l_k(w_{k'}) \geq 0, \\ l_k(w_k) \geq 0 \text{ or } l_k(X_1)\mathbb{Z} + \sum_{j=1}^d l_k(w_j)\mathbb{Z} = l_k(w_k)\mathbb{Z}. \end{cases}$

Pólya process

N.B.: urn process when $V = \mathbb{R}^d$ and $(l_k)_{1 \le k \le d}$ =canonical basis of V^* . Vectors w_k : lines of the replacement matrix R (more exactly $\frac{1}{R}R$).

Question 1: asymptotics of the random vector X_n as $n \to \infty$?

Question 2: à quoi ça sert ?

Transition endomorphism

Define $A \in \mathcal{L}(V)$ by $\forall v \in V, A(v) = \sum_{k=1}^{d} l_k(v) w_k.$

[Urn process: the matrix of A in the canonical basis is ${}^{t}R$.]

Define $u_1 = \sum_{k=1}^d l_k$, linear form, fixed by A.

Choose a Jordan basis of the process, *i.e.* a basis (u_1, \ldots, u_d) of linear forms in which tA has a (complex) block-diagonal form $\text{Diag}(1, J_{p_1}(\lambda_{k_1}), \ldots, J_{p_t}(\lambda_{k_t}))$ where $J_p(z)$ denotes the *p*-dimensional square matrix

$$J_p(z) = \begin{pmatrix} z & 1 & & \\ & z & \ddots & \\ & & \ddots & 1 \\ & & & z \end{pmatrix}$$

Denote by (v_1, \ldots, v_d) its dual basis (of vectors).

Transition endomorphism, continued

Let σ_2 be defined as

$$\sigma_2 = \begin{cases} 1 \text{ if } 1 \text{ is multiple eigenvalue of } A; \\ \max\{\Re\lambda, \ \lambda \in \operatorname{Sp}(A), \ \lambda \neq 1\} \text{ otherwise.} \end{cases}$$

[Hypotheses imply $\sigma_2 \leq 1$.]

Last two definitions before statement : the principal blocks of A are the $J_p(\boldsymbol{z})$ where

•
$$\Re(z) = \sigma_2;$$

• p is maximal for this property.

The process is called principally semisimple (pss) when the principal blocks are of size 1.

Asymptotics of *small* Pólya processes

Theorem 1 (Athreya, Karlin, Janson) With some irreducibility assumption... 1- If $\sigma_2 < 1/2$, $\frac{X_n - nv_1}{\sqrt{n}} \xrightarrow[n \to \infty]{} Gaussian vector.$ 2- If $\sigma_2 = 1/2$ and if $\nu + 1$ is the size of the principal blocks, $\frac{X_n - nv_1}{\sqrt{n \log^{2\nu + 1} n}} \xrightarrow[n \to \infty]{} Gaussian vector.$

Proof: continuous time embedding as multitype branching process, martingale considerations, stopping time, back to discrete process.

Asymptotics of *large* Pólya processes

Theorem 2

Suppose $\sigma_2 > 1/2 + pss$ (for simplicity, no irreducibility assumption). Let $\lambda_2, \ldots, \lambda_r$ be the eigenvalues of A such that $\Re(\lambda_k) = \sigma_2$. 1- There exist unique (complex-valued) random variables W_2, \ldots, W_r s.t. $X_n = nv_1 + \sum_{k=0}^{\infty} n^{\lambda_k} W_k v_k + o(n^{\sigma_2})$ as n tends to infinity, o is a.s. and $L^{\geq 1}$. 2- $\forall \alpha \in \mathbb{N}^{r-1}$. $E\left(W_2^{\alpha_2}\dots W_r^{\alpha_r}\right) = \frac{\Gamma(\tau_1)}{\Gamma(\tau_1 + \langle \alpha, \lambda \rangle)} Q_\alpha(X_1)$ where $\tau_1 = u_1(X_1)$, $\langle \alpha, \lambda \rangle = \sum_{k=2}^{r} \alpha_k \lambda_k,$ $Q_{\alpha} =$ the α -th reduced polynomial.

Non pss case: principal nilpotents of index ν multiply the n^{λ_k} 's by $\log^{\nu} n$.

Large processes, prototypes

• When the process has only one real principal block, *i.e.* when $A \sim \begin{pmatrix} 1 & & \\ & \sigma_2 & \\ & & \ddots \end{pmatrix}$,

then
$$\boxed{\begin{array}{cc} X_n - nv_1 & \stackrel{L^{\geq 1} + ps}{\longrightarrow} & W_2v_2 \\ n^{\sigma_2} & \stackrel{n \to \infty}{\longrightarrow} & W_2v_2 \end{array}} + \text{ moments of } W_2.$$

• When the process has two non real one-dim. principal blocks, *i.e.* when $A \sim \begin{pmatrix} 1 & \\ \lambda_2 & \\ & \overline{\lambda_2} & \\ & & \ddots \end{pmatrix}$, then $\boxed{\begin{array}{c} X_n - nv_1 \\ n^{\sigma_2} & = 2\Re \left(n^{i\sigma'_2}W_2v_2 \right) + o_{ps+L^{\geq 1}}(1) \\ & + \text{ joint moments of } W_2 \text{ and } \overline{W_2}, \end{cases}$

i.e.

$$X_n = nv_1 + n^{\sigma_2}\rho \left[v_2' \cos(\sigma_2' \log n + \varphi) + v_2'' \sin(\sigma_2' \log n + \varphi) \right] + o(n^{\sigma_2}).$$

Transition operator Φ

Conditional expectation: if $f: V \rightarrow W$ is any measurable function,

$$E^{\mathcal{F}_n} f(X_{n+1}) = \sum_{k=1}^d \frac{l_k(X_n)}{n+\tau_1-1} \times f(X_n+w_k)$$
$$= \left(\operatorname{Id} + \frac{\Phi}{n+\tau_1-1} \right) (f)(X_n)$$

where Φ is the difference operator defined for any $v \in V$ by

$$\Phi(f)(v) = \sum_{k=1}^{d} l_k(v) \left[f(v+w_k) - f(v) \right].$$

Induction leads to $Ef(X_n) = \gamma_{\tau_1,n}(\Phi)(f)(X_1)$

where $\gamma_{\tau_1,n}$ is the polynomial defined by $\gamma_{\tau_1,1} = 1$ and, for any $n \geq 2$, $\gamma_{\tau_1,n}(t) = \prod_{k=1}^{n-1} \left(1 + \frac{t}{k+\tau_1-1}\right).$

Reduction of Φ

Recall:
$$\Phi(f)(v) = \sum_{k=1}^{d} l_k(v) \left[f(v+w_k) - f(v) \right].$$

 Φ stabilizes the space of polynomials (d variables) of degree $\leq e$, any $e \geq 0$.

ENCORE MIEUX :

for any $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d$, denote $\mathbf{u}^{\alpha} = u_1^{\alpha_1} \dots u_d^{\alpha_d}$. On the α 's: degree-antialphabetical order, *i.e.* for d = 3 $(1, 0, 0) < (0, 1, 0) < (0, 0, 1) < (2, 0, 0) < (1, 1, 0) < (1, 0, 1) < (0, 2, 0) < \dots$ Define $S_{\alpha} = \operatorname{Vect}\{\mathbf{u}^{\beta}, \ \beta \leq \alpha\}$; then $\Phi(S_{\alpha}) \subseteq S_{\alpha}$.

 $\longrightarrow \Phi$ -stable filtration of the space of polynomials.

Reduced polynomials

For any $z \in \mathbb{C}$, denote

$$\ker(\Phi - z)^{\infty} = \bigcup_{n \ge 0} \ker(\Phi - z \operatorname{Id})^n$$

the characteristic space of Φ relative to z (on polynomials).

The eigenvalues of Φ on polynomials are the complex numbers

$$\langle \alpha, \lambda \rangle = \alpha_1 \lambda_1 + \dots + \alpha_d \lambda_d.$$

Definition : for any $\alpha \in \mathbb{N}^d$, the α -th reduced polynomial Q_{α} is the projection of \mathbf{u}^{α} on $\ker(\Phi - \langle \alpha, \lambda \rangle)^{\infty}$ parallel to $\bigoplus_{z \neq \langle \alpha, \lambda \rangle} \ker(\Phi - z)^{\infty}$.

Basis $(Q_{\alpha})_{\alpha \in \mathbb{N}^d}$ of polynomials. Sometimes, closed formula. Always, recursive computation.

Asymptotics of reduced moments $EQ_{\alpha}(X_n)$

• If Q_{α} is eigenfunction of Φ (eigenvalue $\langle \alpha, \lambda \rangle$), then

$$EQ_{\alpha}(X_{n}) = \gamma_{\tau_{1},n}(\langle \alpha, \lambda \rangle) \times Q_{\alpha}(X_{1})$$

$$\sim \frac{\Gamma(\tau_{1})}{n \to \infty} \frac{\Gamma(\tau_{1})}{\Gamma(\tau_{1} + \langle \alpha, \lambda \rangle)} n^{\langle \alpha, \lambda \rangle} Q_{\alpha}(X_{1}) \quad \text{(Stirling)}.$$

• If not, let ν_{α} be the index of nilpotence of Q_{α} for Φ . Taylor + logarithmic derivative of $\gamma_{\tau_1,n}$ lead to $\log n$ -term:

$$EQ_{\alpha}(X_{n}) \underset{n \to \infty}{\sim} \frac{n^{\langle \alpha, \lambda \rangle} \log^{\nu_{\alpha}} n}{\nu_{\alpha}!} \frac{\Gamma(\tau_{1})}{\Gamma(\tau_{1} + \langle \alpha, \lambda \rangle)} (\Phi - \langle \alpha, \lambda \rangle)^{\nu_{\alpha}}(Q_{\alpha})(X_{1}).$$

Asymptotics of joint principal moments $\mathbf{u}^{lpha}(X_n)$

Develop any \mathbf{u}^{α} in the $(Q_{\alpha})_{\alpha}$ basis (complex coordinates):

$$\mathbf{u}^{\alpha} = Q_{\alpha} + \sum_{\beta < \alpha, \ \langle \beta, \lambda \rangle \neq \langle \alpha, \lambda \rangle} q_{\alpha, \beta} Q_{\beta}.$$
(1)

Recall: $EQ_{\beta}(X_n) \sim Cn^{\langle \beta, \lambda \rangle} \log^{\nu_{\beta}} n.$

Questions :

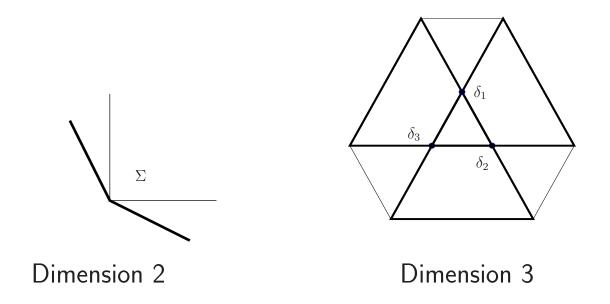
1- which $q_{\alpha,\beta}$ are zero? 2- For a given α , which $\Re\langle\beta,\lambda\rangle$ is maximal among indices $\beta < \alpha$ such that $q_{\alpha,\beta} \neq 0$?

 \longrightarrow Refine indices in formula (1)?

Polytopes in the space of exponents

Let Σ be the cone in \mathbb{R}^d defined by $((\delta_k)_{1 \leq k \leq d}$ is the canonical basis of $\mathbb{R}^d)$

$$\Sigma = \sum_{1 \le i \ne j \le d} \mathbb{R}_{\ge 0} (2\delta_i - \delta_j),$$



... and A_{α} some suitable compact rational polyhedral polytope ...

Fin de l'histoire des moments

Some geometrical work, and formula (1) is refined:

$$\mathbf{u}^{\alpha} = Q_{\alpha} + \sum_{\beta \in A_{\alpha} - \Sigma} q_{\alpha,\beta} Q_{\beta}.$$

Property of A_{α} 's and Σ : is α is such that

$$\forall k, \left(\Re(\lambda_k) \le 1/2 \right) \Longrightarrow \left(\alpha_k = 0 \right),$$

then $EQ_{\alpha}(X_n)$ is the winner in the asymptotics of $E \mathbf{u}^{\alpha}(X_n)$ (and other ones...).

 \longrightarrow Asymptotics of joint principal moments $E \mathbf{u}^{\alpha}(X_n)$ (phase transition 1/2 appears there).

Fin de l'histoire

Decompose X_n as sum of its projections on the characteristic spaces for A:

$$X_n = (n + \tau_1 - 1)v_1 + \pi_{]1/2,1[}(X_n) + \pi_{\leq 1/2}(X_n).$$

• $\pi_{]1/2,1[}$ -term

Renormalize to obtain a martingale $(\gamma_{\tau_1,n}(\pi_{]1/2,1[}A)^{-1}\pi_{]1/2,1[}(X_n))_n$. By evaluation of joint principal moments, convergence in $L^{\geq 1}$ (Burkholder inequality) and computation of all moments of its limit.

• $\pi_{\leq 1/2}$ -term

By evaluation of joint principal moments, $o(n^{\sigma_2})$ almost surely and in $L^{\geq 1}$.

Et voilà.