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Pólya-Eggenberger urns with 2 colours

One urn, red and black balls, initial composition U1 = t(#red, #black).

Replacement matrix R =

(

a b
c d

)

, a, b, c, d integers.

Composition at time n: vector Un = t(#red, #black).

Assumptions

Balance: a + b = c + d := B ≥ 1

Tenability:







b ≥ 0, c ≥ 0
a ≥ 0 or

(

a|c and a|(#red)1
)

d ≥ 0 or
(

d|b and d|(#black)1
)

Pólya process: (Xn)n, where Xn = 1
B
Un.

Generalisation in dimension d ≥ 2, replacement matrix with real entries (ran-
dom walk in Rd), possible linear change of coordinates: general definition of

Pólya process

.



Pólya process: definition

V : real vector space of finite dimension d ≥ 1.
X1, w1, . . . , wd vectors of V , (lk)1≤k≤d basis of V ∗ (linear forms).
(Xn)n: random walk in V with increments in {w1, . . . , wd}, defined by

Prob (Xn+1 = Xn + wk|Xn) =
lk(Xn)

n + τ1 − 1

where τ1 is the positive real number defined by τ1 =
∑d

k=1 lk(X1).

Assumptions

i- Initialisation: X1 6= 0 and ∀k ∈ {1, . . . , d}, lk(X1) ≥ 0;

ii- balance: for all k ∈ {1, . . . , d},
∑d

j=1 lj(wk) = 1;
iii- tenability: for all k, k′ ∈ {1, . . . , d},















k 6= k′ =⇒ lk(wk′) ≥ 0,

lk(wk) ≥ 0 or lk(X1)Z +
d

∑

j=1

lk(wj)Z = lk(wk)Z.



Pólya process

N.B.: urn process when V = Rd and (lk)1≤k≤d =canonical basis of V ∗.
Vectors wk: lines of the replacement matrix R (more exactly 1

BR).

Question 1: asymptotics of the random vector Xn as n → ∞?

Question 2: à quoi ça sert ?



Transition endomorphism

Define A ∈ L(V ) by ∀v ∈ V, A(v) =
∑d

k=1 lk(v)wk.

[Urn process: the matrix of A in the canonical basis is tR.]

Define u1 =
∑d

k=1 lk, linear form, fixed by A.

Choose a Jordan basis of the process, i.e. a basis (u1, . . . , ud) of linear forms in
which tA has a (complex) block-diagonal form Diag (1, Jp1(λk1), . . . , Jpt(λkt))
where Jp(z) denotes the p-dimensional square matrix

Jp(z) =









z 1
z . . .

. . . 1
z









.

Denote by (v1, . . . , vd) its dual basis (of vectors).



Transition endomorphism, continued

Let σ2 be defined as

σ2 =







1 if 1 is multiple eigenvalue of A;

max{ℜλ, λ ∈ Sp(A), λ 6= 1} otherwise.

[Hypotheses imply σ2 ≤ 1.]

Last two definitions before statement : the principal blocks of A are the Jp(z)
where

• ℜ(z) = σ2;
• p is maximal for this property.

The process is called principally semisimple (pss) when the principal blocks
are of size 1.



Asymptotics of small Pólya processes

Theorem 1 (Athreya, Karlin, Janson)
With some irreducibility assumption. . .
1- If σ2 < 1/2,

Xn − nv1√
n

D−→
n→∞

Gaussian vector.

2- If σ2 = 1/2 and if ν + 1 is the size of the principal blocks,

Xn − nv1
√

n log2ν+1 n

D−→
n→∞

Gaussian vector.

Proof: continuous time embedding as multitype branching process, martingale
considerations, stopping time, back to discrete process.



Asymptotics of large Pólya processes

Theorem 2
Suppose σ2 > 1/2 +pss (for simplicity, no irreducibility assumption).
Let λ2, . . . , λr be the eigenvalues of A such that ℜ(λk) = σ2.
1- There exist unique (complex-valued) random variables W2, . . . , Wr s.t.

Xn = nv1 +
r

∑

k=2

nλkWkvk + o(nσ2)

as n tends to infinity, o is a.s. and L≥1.
2- ∀α ∈ N

r−1,

E (W α2
2 . . .W αr

r ) =
Γ(τ1)

Γ(τ1 + 〈α, λ〉)Qα(X1)

where τ1 = u1(X1),
〈α, λ〉 =

∑r
k=2 αkλk,

Qα = the α-th reduced polynomial.

Non pss case: principal nilpotents of index ν multiply the nλk’s by logν n.



Large processes, prototypes

• When the process has only one real principal block, i.e. when A ∼





1
σ2

. . .



,

then
Xn − nv1

nσ2

L≥1+ps−→
n→∞

W2v2 + moments of W2.

• When the process has two non real one-dim. principal blocks, i.e. when

A ∼









1
λ2

λ2
. . .









, then
Xn − nv1

nσ2
= 2ℜ

(

niσ′2W2v2

)

+ ops+L≥1(1)

+ joint moments of W2 and W2,

i.e.

Xn = nv1 + nσ2ρ

[

v′2 cos(σ′
2 log n + ϕ) + v′′2 sin(σ′

2 log n + ϕ)

]

+ o(nσ2).



Transition operator Φ

Conditional expectation: if f : V → W is any measurable function,

EFnf(Xn+1) =
d

∑

k=1

lk(Xn)

n + τ1 − 1
× f(Xn + wk)

=

(

Id +
Φ

n + τ1 − 1

)

(f)(Xn)

where Φ is the difference operator defined for any v ∈ V by

Φ(f)(v) =

d
∑

k=1

lk(v)

[

f(v + wk) − f(v)

]

.

Induction leads to Ef(Xn) = γτ1,n(Φ)(f)(X1)

where γτ1,n is the polynomial defined by γτ1,1 = 1 and, for any n ≥ 2,

γτ1,n(t) =
∏n−1

k=1

(

1 + t
k+τ1−1

)

.



Reduction of Φ

Recall: Φ(f)(v) =
d

∑

k=1

lk(v)

[

f(v + wk) − f(v)

]

.

Φ stabilizes the space of polynomials (d variables) of degree ≤ e, any e ≥ 0.

ENCORE MIEUX :

for any α = (α1, . . . , αd) ∈ Nd, denote u
α = uα1

1 . . . u
αd
d .

On the α’s: degree-antialphabetical order, i.e. for d = 3

(1, 0, 0) < (0, 1, 0) < (0, 0, 1) < (2, 0, 0) < (1, 1, 0) < (1, 0, 1) < (0, 2, 0) < . . .

Define Sα = Vect{uβ, β ≤ α}; then Φ(Sα) ⊆ Sα.

−→ Φ-stable filtration of the space of polynomials.



Reduced polynomials

For any z ∈ C, denote

ker(Φ − z)∞ =
⋃

n≥0

ker(Φ − z Id)n

the characteristic space of Φ relative to z (on polynomials).

The eigenvalues of Φ on polynomials are the complex numbers

〈α, λ〉 = α1λ1 + · · · + αdλd.

Definition : for any α ∈ N
d, the α-th reduced polynomial

Qα is the projection of u
α on ker(Φ − 〈α, λ〉)∞ parallel to

⊕

z 6=〈α,λ〉 ker(Φ − z)∞.

Basis (Qα)α∈Nd of polynomials.
Sometimes, closed formula. Always, recursive computation.



Asymptotics of reduced moments EQα(Xn)

• If Qα is eigenfunction of Φ (eigenvalue 〈α, λ〉), then

EQα(Xn) = γτ1,n(〈α, λ〉) × Qα(X1)

∼
n→∞

Γ(τ1)

Γ(τ1 + 〈α, λ〉)n
〈α,λ〉Qα(X1) (Stirling).

• If not, let να be the index of nilpotence of Qα for Φ. Taylor + logarithmic
derivative of γτ1,n lead to log n-term:

EQα(Xn) ∼
n→∞

n〈α,λ〉 logνα n

να!

Γ(τ1)

Γ(τ1 + 〈α, λ〉)(Φ − 〈α, λ〉)να(Qα)(X1).



Asymptotics of joint principal moments u
α(Xn)

Develop any u
α in the (Qα)α basis (complex coordinates):

u
α = Qα +

∑

β<α, 〈β,λ〉6=〈α,λ〉
qα,βQβ. (1)

Recall: EQβ(Xn) ∼ Cn〈β,λ〉 logνβ n.

Questions :

1- which qα,β are zero?
2- For a given α, which ℜ〈β, λ〉 is maximal among indices β < α such
that qα,β 6= 0?

−→ Refine indices in formula (1)?



Polytopes in the space of exponents

Let Σ be the cone in Rd defined by ((δk)1≤k≤d is the canonical basis of Rd)

Σ =
∑

1≤i 6=j≤d

R≥0(2δi − δj),

Σ

δ1

δ2

δ3

Dimension 2 Dimension 3

. . . and Aα some suitable compact rational polyhedral polytope . . .



Fin de l’histoire des moments

Some geometrical work, and formula (1) is refined:

u
α = Qα +

∑

β∈Aα−Σ

qα,βQβ.

Property of Aα’s and Σ: is α is such that

∀k,

(

ℜ(λk) ≤ 1/2

)

=⇒
(

αk = 0

)

,

then EQα(Xn) is the winner in the asymptotics of E u
α(Xn) (and other

ones. . . ).

−→ Asymptotics of joint principal moments E u
α(Xn) (phase transition 1/2

appears there).



Fin de l’histoire

Decompose Xn as sum of its projections on the characteristic spaces for A:

Xn = (n + τ1 − 1)v1 + π]1/2,1[(Xn) + π≤1/2(Xn).

• π]1/2,1[-term
Renormalize to obtain a martingale

(

γτ1,n(π]1/2,1[A)−1π]1/2,1[(Xn)
)

n
.

By evaluation of joint principal moments, convergence in L≥1 (Burkholder
inequality) and computation of all moments of its limit.

• π≤1/2-term
By evaluation of joint principal moments, o(nσ2) almost surely and in L≥1.

Et voilà.


